本站已迁移到西南大学站群平台,不久后将正式关闭,
为防止您今后找不到我们,强烈建议您通过以下链接进入新版网站后,收藏新站点网址,谢谢!

http://gjs.swu.edu.cn

人员简历

郑志亮

研究员/博士/博导

联系方式:重庆市北碚区歇马镇柑桔村15号 邮编:400712

专长:果树学,植物分子与细胞生物学,基因工程育种
郑志亮,1991年毕业于福建农学院园艺系,1994年获中国农业科学院研究生院硕士学位,1999年获美国俄亥俄州立大学博士学位,现为纽约城市大学终身正教授,并聘为西南大学柑桔研究所客座教授与博士生导师,创建植物营养信号传导与果实品质改进实验室。其研究先后被美国国家卫生研究院 (NIH)、农业部 (USDA)、国家科学基金 (NSF) 及重庆市科委等资助,目前主要研究真核生物细胞形态发生的基因表达调控网络、植物碳氮硫营养的信号传导、果实糖酸品质的控制机理和品种改进,已在PNAS、Plant Cell、Plant Journal、Plant Physiology、BMC Genomics、BMC Plant Biology、Frontiers in Plant Science、J. Amer. Soc. Hort. Sci. 等刊物上发表多篇重要论文,总计被引用1,600多次。

突出研究成果包括:
(1)转光敏色素PHYB1基因改良菊花性状(研究论文2001年发表后被美国园艺学会评为该学会所有刊物中的最杰出论文)
(2)阐述了ROP10 GTPase和LecRKA4受体激酶在植物激素ABA的信号传导机制
(3)克隆了植物在碳氮营养平衡信号传导中的第一个负调节因子(OSU1)
(4)于2014年首次报道了具有转运与感受双重功能的植物硫营养的受体蛋白(SULTR1;2)
(5)于2016年发现了植物和酵母中高度保守的、Rho GTPase通过调节RNA聚合酶(Pol II)的磷酸化模式进行调控基因表达的一条信号传导捷径
(6)构建了柑桔应答黄龙病侵染及果实酸度或糖酸比调节的基因网络。

柑桔果实品质控制的机理及品种改良:
(1) 构建和分析柑桔果实酸度成因或糖酸比的基因调控网络:首先,利用所内的柑桔种质资源,通过RNA测序手段分析了四个不同酸度的甜橙品种、在两个不同发育阶段的果实的转录组,应用相关性分析获得了39个与酸度极其相关的基因。和所有前人研究不同的是,我们筛选到的基因有不少与离子转运、基因转录和蛋白降解相关,同时,应用整合性的系统生物学,我们发现其中15个关键基因很可能与酸度调控有关,而且,酸度调控网络包含三个主要的基因表达调控模块 (Frontiers in Plant Science, 2016, 7: 486)。 此外,我们还发现了一组与糖酸比极度相关的基因,它们的表达模式以及调控模块似乎和糖或酸度调节的相关性都很低 (BMC Plant Biology, 2017)。欢迎有兴趣的学生、学者加盟,进行关键的后续研究!
(2) 柑桔黄龙病防御反应的系统生物学研究:以柑桔黄龙病抗性为模式系统,用系统生物学手段分析了黄龙病菌侵染后的柑桔转录组,构建了世界上第一个柑桔抗性的基因调控网络(BMC Genomics, 2013, 14: 27)。该网络含3,507 个基因、共 56,287对基因-基因间相互作用,而且,我们在西南大学柑桔研究所建立了柑桔基因相互作用网络数据库 (CitGIN; http://xt.cric.cn/cgr/CitGIN.php), 供世界柑桔同行搜索使用,论文发表至今已被国内外引用30多次。

第一署名单位为西南大学的论文(#同等贡献,*通讯作者):
[6] Qiao L#, Cao M#, Zheng J, Zhao Y, Zheng Z-L* (2017) Gene coexpression network analysis uncovers a possible mechanistically distinct class of sugar/acid ratio-associated genes in sweet orange. BMC Plant Biology: 17: 186
[5] Zhang B, Yang G#, Chen Y#, Zhao Y, Gao P, Liu B, Wang H, Zheng Z-L* (2016) C-terminal domain (CTD) phosphatase links Rho GTPase signaling to Pol II CTD phosphorylation in Arabidopsis and yeast. Proc. Natl. Acad. Sci. USA (PNAS) 113: E8197-E8206
[4] 乔梁,曹明浩,郑剑,郑志亮* (2016) 果实酸度调控的遗传、分子与系统生物学研究进展. 中国南方果树45: 158-163
[3] Huang D#, Zhao Y#,*, Cao M, Qiao L, Zheng Z-L* (2016). Integrated systems biology analysis reveals candidate genes for acidity control in developing fruits of sweet orange (Citrus sinensis L. Osbeck). Frontiers in Plant Science 7: 486
[2] Zheng Z-L*, Zhang B, Leustek T* (2014) Transceptors at the boundary of nutrient transporters and receptors: A new role for Arabidopsis SULTR1;2 in sulfur sensing. Frontiers in Plant Science 5:710
[1] Zheng Z-L*, Zhao Y* (2013) Transcriptome comparison and gene coexpression network analysis provide a systems view of citrus response to ‘Candidatus Liberibacter asiaticus’ infection. BMC Genomics 14: 27

在美国工作期间的主要论文:
[15] Zheng Z-L* (2017) Ras and Rho GTPase modulation of Pol II transcription: A shortcut model revisited. Transcription 8: 268-274
[14] Zhao Y, Zheng Z-L, Castellanos FX (2017) Analysis of alcohol use disorders from the Nathan Kline Institute-Rockland Sample: Correlation of brain cortical thickness with neuroticism. Drug and Alcohol Dependence 170: 66-73
[13] Zhang B, Yang G, Chen Y, Zhao Y, Gao P, Liu B, Wang H, Zheng Z-L* (2016) C-terminal domain (CTD) phosphatase links Rho GTPase signaling to Pol II CTD phosphorylation in Arabidopsis and yeast. Proc. Natl. Acad. Sci. USA 113 113: E8197-E8206
[12] Zhang B, Pasini R, Dan H, Joshi N, Zhao Y, Leustek T*, Zheng Z-L* (2014) Aberrant gene expression in the Arabidopsis SULTR1;2 mutants suggests a possible regulatory role for this sulfate transporter in response to sulfur nutrient status. Plant Journal 77:185-197
[11] Zheng Z-L* (2009) Carbon and nitrogen nutrient balance signaling in plants. Plant Signaling & Behavior 4: 584-591
[10] Xin Z, Wang A, Yang G, Gao P, Zheng Z-L* (2009) The Arabidopsis A4 subfamily of lectin receptor kinase negatively regulates abscisic acid response in seed germination. Plant Physiology 149: 434-444
[9] Gao P, Xin Z, Zheng Z-L* (2008) The OSU1/QUA2/TSD2-encoded putative methyltransferase is a critical modulator of carbon and nitrogen nutrient balance response in Arabidopsis. PLoS ONE 3: e1387
[8] Dan H, Yang G, Zheng Z-L* (2007) A negative regulatory role for auxin in sulphate deficiency response in Arabidopsis thaliana. Plant Molecular Biology 63: 221-235
[7] Yang G, Gao P, Zhang H, Huang S, Zheng Z-L* (2007) A mutation in MRH2 kinesin enhances the root hair tip growth defect caused by constitutively activated ROP2 small GTPase in Arabidopsis. PLoS ONE 2: e1074
[6] Zheng Z-L, Yang Z, Jang J-C, Metzger JD (2006) Phytochromes A1 and B1 have distinct functions in the photoperiodic control of flowering in the obligate long-day plant Nicotiana sylvestris. Plant, Cell & Environment 29: 1673-1685
[5] Xin Z, Zhao Y, Zheng Z-L* (2005) Transcriptome analysis reveals specific modulation of abscisic acid signaling by ROP10 small GTPase in Arabidopsis. Plant Physiology 139: 1350-1365
[4] Fu Y, Gu Y, Zheng Z-L, Wasteneys G, Yang Z (2005) Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell 120: 687-700
[3] Zheng Z-L, Nafisi M, Tam A, Li H, Crowell DN, Chary SN, Shen J, Schroeder JI, Yang Z (2002) Plasma membrane-associated ROP10 small GTPase is a specific negative regulator of abscisic acid responses in Arabidopsis. Plant Cell 14: 2787-2797
[2] Li H, Shen J, Zheng Z-L, Lin Y, Yang Z (2001) The Rop GTPase switch controls multiple developmental processes in Arabidopsis. Plant Physiology 126: 670-684
[1] Zheng Z-L, Yang Z, Jang J-C, Metzger JD (2001) Modification of plant architecture in chrysanthemum by ectopic expression of the tobacco phytochrome B1 gene. Journal of the American Society for Horticultural Sciences 126: 19-26 [Featured in “Research Spotlight” (J. Amer. Soc. Hort. Sci., 2001, 126: 4-5); Won the American Society for Horticultural Sciences Most Outstanding Publication Award of 2001]